A Structure Identification Method for Urban Agglomeration Based on Nighttime Light Data and Railway Data

نویسندگان

چکیده

The urban spatial structure is a key feature of the distribution social and economic resources. an agglomeration abstract relationship expression urbanization. Urban agglomerations develop for multiple reasons, including planning natural evolution. To date, most research related to has been based on single data source, which limitation. This aims propose identification method via complex network nighttime light railway data. Firstly, we extracted built-up area using defense meteorological satellite program/operational line scanner (DMSP/OLS) data, divided it into objects obtain (NLUN) by borough. Secondly, aggregated stations at municipal level operation (RUN). Following this, established composite (CUN) consisting NLUN RUN adjacency matrix. Finally, Louvain algorithm comprehensive strength index (CSI) were used detect communities central nodes CUN core cities. results show that best accuracy, 5.72% 15.94% higher than RUN, respectively. Core cities in identified CSI are least 3.04% those single-source network. In addition, pattern Chinese study expressed as “three vertical”, development shows unbalanced trend.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping Development Pattern in Beijing-Tianjin-Hebei Urban Agglomeration Using DMSP/OLS Nighttime Light Data

Spatial inequality of urban development may cause problems like inequality of living conditions and the lack of sustainability, drawing increasing academic interests and societal concerns. Previous studies based on statistical data can hardly reveal the interior mechanism of spatial inequality due to the limitation of statistical units, while the application of remote sensing data, such as nigh...

متن کامل

Urban Growth and Rural Transition in China Based on DMSP/OLS Nighttime Light Data

Nighttime light (NTL) images provide uniform, consistent, and valuable data sources. Based on four reference regions, the NTL imagery of China was fully intercalibrated during the period 1992–2012. Using lit areas and the intensity of NTL imagery, this study synthetically analyzed the urbanization process and rural transition in China. The results showed that, over the whole country, the pixel ...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Diagnosis of diabetes by using a data mining method based on native data

Background & Aim: Detecting the abnormal performance of diabetes and subsequently getting proper treatment can reduce the mortality associated with the disease. Also, timely diagnosis will result in irreversible complications for the patient. The aim of this study was to determine the status of diabetes mellitus using data mining techniques. Methods: This is an analytical study and its databas...

متن کامل

A Simulation Study on the Urban Population of China Based on Nighttime Light Data Acquired from DMSP/OLS

The urban population (UP) measure is one of the most direct indicators that reflect the urbanization process and the impacts of human activities. The dynamics of UP is of great importance to studying urban economic, social development, and resource utilization. Currently, China lacks long time series UP data with consistent standards and comparability over time. The nighttime light images from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2022

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs15010216